Practical Radiation Protection In Healthcare

Author: Colin J. Martin
Publisher: Oxford University Press, USA
ISBN: 9780199655212
Size: 18.10 MB
Format: PDF, ePub, Mobi
View: 60

The application of radiation to medical problems plays an ever-increasing role in diagnosis and treatment of disease. It is essential that medical physicists have the knowledge, understanding and practical skills to implement radiation protection as new techniques are developed. Practical Radiation Protection in Healthcare provides a practical guide for medical physicists and others involved with radiation protection in the healthcare environment. The guidance is based on principles set out in current recommendations of the International Commission for Radiological Protection and methods developed by a variety of professional bodies. Written by practitioners experienced in the field this practical reference manual covers both established techniques and new areas of application. This new edition has be fully revised and updated to cover new requirements linked to the increased knowledge of radiation effects, and the development of new technology. Each specialist area is covered in a separate chapter to allow easy reference with individual chapters being assigned to different types of non-ionising radiations. Tabulated data is included to allow the reader to carry out calculations for situations encountered frequently without reference to further texts.

Practical Radiation Protection In Healthcare

Author: Colin J Martin
Publisher: OUP Oxford
ISBN: 9780191038877
Size: 15.27 MB
Format: PDF, ePub
View: 54

The application of radiation to medical problems plays an ever-increasing role in diagnosis and treatment of disease. It is essential that medical physicists have the knowledge, understanding and practical skills to implement radiation protection as new techniques are developed. Practical Radiation Protection in Healthcare provides a practical guide for medical physicists and others involved with radiation protection in the healthcare environment. The guidance is based on principles set out in current recommendations of the International Commission for Radiological Protection and methods developed by a variety of professional bodies. Written by practitioners experienced in the field this practical reference manual covers both established techniques and new areas of application. This new edition has be fully revised and updated to cover new requirements linked to the increased knowledge of radiation effects, and the development of new technology. Each specialist area is covered in a separate chapter to allow easy reference with individual chapters being assigned to different types of non-ionising radiations. Tabulated data is included to allow the reader to carry out calculations for situations encountered frequently without reference to further texts.

Practical Radiation Protection In Healthcare

Author: Colin J Martin
Publisher: OUP Oxford
ISBN: 0192630822
Size: 12.28 MB
Format: PDF, Mobi
View: 59

Radiation protection is a broad area within medical physics and radiology. This multi-authored text covers the breadth of the field. The contents are divided into four parts leading from the theoretical background needed for the use of ionising radiations in medicine. The first part covers the key knowledge needed to understand radiation protection. The second part takes a practically-orientated approach to the principles, techniques and legislation in the field. The third and fourth parts cover solutions for radiation protection for firstly ionising radiation, and the non-ionising radiation, an area which is often neglected in other texts.

Practical Radiation Oncology Physics

Author: Sonja Dieterich
Publisher: Elsevier Health Sciences
ISBN: 9780323262095
Size: 16.22 MB
Format: PDF, Docs
View: 43

Perfect for radiation oncologists, medical physicists, and residents in both fields, Practical Radiation Oncology Physics provides a concise and practical summary of the current practice standards in therapeutic medical physics. A companion to the fourth edition of Clinical Radiation Oncology, by Drs. Leonard Gunderson and Joel Tepper, this indispensable guide helps you ensure a current, state-of-the art clinical practice. Covers key topics such as relative and in-vivo dosimetry, imaging and clinical imaging, stereotactic body radiation therapy, and brachytherapy. Describes technical aspects and patient-related aspects of current clinical practice. Offers key practice guideline recommendations from professional societies throughout - including AAPM, ASTRO, ABS, ACR, IAEA, and others. Includes therapeutic applications of x-rays, gamma rays, electron and charged particle beams, neutrons, and radiation from sealed radionuclide sources, plus the equipment associated with their production, use, measurement, and evaluation. Features a "For the Physician" box in each chapter, which summarizes the key points with the most impact on the quality and safety of patient care. Provides a user-friendly appendix with annotated compilations of all relevant recommendation documents. Includes an enhanced Expert Consult eBook with open-ended questions, ideal for self-assessment and highlighting key points from each chapter. Download and search all of the text, figures, and references on any mobile device.

Radiation Protection In Medical Imaging And Radiation Oncology

Author: Richard J. Vetter
Publisher: CRC Press
ISBN: 9781482245387
Size: 20.31 MB
Format: PDF, ePub
View: 45

Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also includes substantial information on international aspects of radiation protection, with sections covering Africa, Asia and Oceania, the European Union, the Middle East, and North and Latin America.

Physics For Radiation Protection

Author: James E. Martin
Publisher: John Wiley & Sons
ISBN: 9783527667086
Size: 10.20 MB
Format: PDF, Docs
View: 97

A practical guide to the basic physics that radiation protection professionals need A much-needed working resource for health physicists and other radiation protection professionals, this volume presents clear, thorough, up-to-date explanations of the basic physics necessary to address real-world problems in radiation protection. Designed for readers with limited as well as basic science backgrounds, Physics for Radiation Protection emphasizes applied concepts and carefully illustrates all topics through examples as well as practice problems. Physics for Radiation Protection draws substantially on current resource data available for health physics use, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts of the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided. Coverage includes: The atom as an energy system An overview of the major discoveries in radiation physics Extensive discussion of radioactivity, including sources and materials Nuclear interactions and processes of radiation dose Calculational methods for radiation exposure, dose, and shielding Nuclear fission and production of activation and fission products Specialty topics ranging from nuclear criticality and applied statistics to X rays Extensive and current resource data cross-referenced to standard compendiums Extensive appendices and more than 400 figures This complete discussion of the basic concepts allows readers to advance their professional skills.

Engineering Patient Safety In Radiation Oncology

Author: Lawrence Marks
Publisher: CRC Press
ISBN: 9781482233650
Size: 11.71 MB
Format: PDF, Kindle
View: 88

Because radiation is a central curative and palliative therapy for many patients, it is essential to have safe and efficient systems for planning and delivering radiation therapy. Factors such as rapid technological advances, financial reorganization, an aging population, and evolving societal expectations, however, may be compromising our ability to deliver highly reliable and efficient care. Engineering Patient Safety in Radiation Oncology describes proven concepts and examples, borrowed from organizations known for high reliability and value creation, to guide radiation oncology centers towards achieving patient safety and quality goals. It portrays the authors’ efforts at the University of North Carolina to address the challenges of keeping patients safe while continuously improving care delivery processes. Reviews past and current challenges of patient safety issues within radiation oncology Provides an overview of best practices from high reliability organizations Explains how to optimize workplaces and work processes to minimize human error Offers methods for engaging and respecting people during their transition to safety mindfulness Requiring no prior knowledge of high reliability and value creation, the book is divided into two parts. Part one introduces the basic concepts, methods, and tools that underlie the authors’ approach to high reliability and value creation. In addition, it provides an overview of key safety challenges within radiation oncology. In part two, the authors supply an in-depth account of their journey to high reliability and value creation at the University of North Carolina.